Homework 10 - Material from Chapters 10-11

1. Let \(\mathbb{R}[x] \) denote the group consisting of all polynomials (in the variable \(x \)) with real coefficients, under addition. (So each element is a polynomial, the operation is addition, the identity element is the zero polynomial \(f(x) = 0 \), etc.) Determine whether the function \(\varphi : \mathbb{R}[x] \to \mathbb{R}[x] \) given by \(\varphi(f(x)) = f'(x) \) is a homomorphism or not, and justify your answer. If it is a homomorphism, what is its kernel?

Solution: Yes, \(\varphi \) is a homomorphism: Given any \(f, g \in \mathbb{R}[x] \), we have \(\varphi(f(x) + g(x)) = (f(x) + g(x))' = f'(x) + g'(x) = \varphi(f(x)) + \varphi(g(x)) \) by properties of derivatives.

Since the identity of \(\mathbb{R}[x] \) is just the set of all constant functions.

2. Let \(G, H, K \) be groups. Suppose \(\varphi : G \to H \) is a homomorphism and \(\psi : H \to K \) is a homomorphism. Prove that \(\psi \varphi : G \to K \) is also a homomorphism, and describe how \(\ker \varphi \) and \(\ker \psi \varphi \) are related.

Solution: Let \(a, b \in G \) be arbitrary. Then \(\psi \varphi(ab) = \psi(\varphi(ab)) = \psi(\varphi(a)\varphi(b)) \) since \(\varphi \) is OP. But since \(\psi \) is also OP, that equals \(\psi(\varphi(a))\psi(\varphi(b)) = \psi \varphi(a)\psi \varphi(b) \), so \(\psi \varphi \) is also OP and thus a homomorphism.

Suppose \(x \in \ker \varphi \). Then \(x \in G \) and \(\varphi(x) = e_H \), the identity of \(H \). Since \(\psi \) is a homomorphism, \(\psi(e_H) = e_K \), the identity of \(K \). Thus \(\psi \varphi(x) = \psi(\varphi(x)) = \psi(e_H) = e_K \), so \(x \in \ker \psi \varphi \). This proves that \(\ker \psi \subseteq \ker \psi \varphi \).

(On the other hand, \(\ker \psi \) may contain elements other than \(e_H \) in \(H \), in which case \(\ker \psi \varphi \) contains elements not in \(\ker \varphi \), so the two kernels are not generally equal.)

3. Let \(G \) and \(H \) be groups. Define \(\varphi : G \oplus H \to G \) by \(\varphi(g, h) = g \). Show that \(\varphi \) is a homomorphism, and find its kernel. (This is called a projection mapping.)

Solution: Let \((a, b) \) and \((c, d) \) in \(G \oplus H \) be arbitrary. Then \(\varphi((a, b)(c, d)) = \varphi((ac, bd)) = ac \), while \(\varphi((a, b))\varphi((c, d)) = ac \). Since they are equal, \(\varphi \) is a homomorphism.

The kernel is all \((a, b) \in G \oplus H \) such that \(\varphi((a, b)) = e_G \), which is equivalent to \(a = e_G \).

(b \in H \) can be anything.) So the kernel is the set \(\{e_G\} \oplus H \).

4. Use the first isomorphism theorem to prove that \(\mathbb{R}^*/\langle -1 \rangle \approx \mathbb{R}^+ \).

Solution: There are lots of homomorphisms that work. Here’s one: Define \(\varphi : \mathbb{R}^* \to \mathbb{R}^+ \) by \(\varphi(x) = |x| \) (the absolute value of \(x \), not the order). Then \(\varphi(xy) = |xy| = |x||y| = \varphi(x)\varphi(y) \), so \(\varphi \) is a homomorphism. The kernel of \(\varphi \) is all \(x \in \mathbb{R}^* \) such that \(|x| = 1 \), so the kernel is \(\{\pm 1\} \), also known as \(\langle -1 \rangle \). Also, for any \(b \in \mathbb{R}^+ \) we also have that \(b \in \mathbb{R}^* \) and \(\varphi(b) = |b| = b \) since \(b \) is positive, so \(\varphi \) is onto.

Thus by the first isomorphism theorem, the domain of \(\varphi \) / kernel of \(\varphi \) is isomorphic to image of \(\varphi \), so we have \(\mathbb{R}^*/\langle -1 \rangle \approx \mathbb{R}^+ \).
5. Use the first isomorphism theorem to prove that \(\mathbb{Z}_{24}/\langle 6 \rangle \approx \mathbb{Z}_6 \). Can you generalize the statement?

Solution: Define \(\varphi : \mathbb{Z}_{24} \to \mathbb{Z}_6 \) by \(\varphi(n) = n \mod 6 \). Then we have \(\varphi(a + b) = \varphi(a) + \varphi(b) \mod 24 = (a + b) \mod 24 \mod 6 \). Since 6 is a divisor of 24, mod 24 then mod 6 is equivalent to just mod 6. So this equals \((a + b) \mod 6 = a \mod 6 + b \mod 6 \mod 6 = \varphi(a) + \varphi(b)\). Thus \(\varphi \) is a homomorphism. Its kernel is all elements of \(\mathbb{Z}_{24} \) that reduce to 0 mod 6, which is to say all multiples of 6 in \(\mathbb{Z}_{24} \), also known as \(\langle 6 \rangle \). Also, if \(x \in \mathbb{Z}_6 \) then also \(x \in \mathbb{Z}_{24} \) and \(\varphi(x) = x \), so \(\varphi \) is onto. Thus by the first isomorphism theorem, the result follows.

6. If \(\varphi \) is a homomorphism from \(\mathbb{Z}_{40} \) onto a group of order 8, find \(\ker \varphi \).

Solution: The first iso. theorem says \(\mathbb{Z}_{40}/\ker \varphi \approx \) group of order 8, so the order of \(\mathbb{Z}_{40}/\ker \varphi \) must be 8. That means \(\frac{|\mathbb{Z}_{40}|}{|\ker \varphi|} = 8 \), so \(|\ker \varphi| = 5 \). There is only one subgroup of order 5 in \(\mathbb{Z}_{40} \), namely \(\langle 8 \rangle \), so that must be the kernel of \(\varphi \).

7. Let \(G, H \) be groups. Prove that \((G \oplus H)/(G \oplus \{e\}) \approx H \).

Solution: Define a function \(\varphi : G \oplus H \to H \) by \(\varphi((g, h)) = h \). Similar to number 3 above, \(\varphi \) is a homomorphism, onto, with kernel \(G \oplus \{e_H\} \). Thus by the first isomorphism theorem, \((G \oplus H)/G \oplus \{e_H\} \approx H \), as desired.

8. Define a function \(\varphi : \mathbb{Z}_{12} \to \mathbb{Z}_{10} \) by \(\varphi(x) = 3x \). Why isn’t \(\varphi \) a homomorphism?

Solution: It’s not operation-preserving for all elements: \(\varphi(6 + 6) = \varphi(0) = 0 \), while \(\varphi(6) + \varphi(6) = 18 + 18 \mod 10 = 36 \mod 10 = 6 \). Since these aren’t equal, \(\varphi \) isn’t OP.

9. Define a function \(\varphi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \) by \(\varphi(a, b) = b - a \).

(a) Show that \(\varphi \) is a homomorphism, and find its kernel.

Solution: For arbitrary \((a, b), (c, d) \in \mathbb{Z} \oplus \mathbb{Z}\), we have \(\varphi((a, b) + (c, d)) = \varphi((a + c, b + d)) = (b + d) - (a + c) = b + d - a - c = (b - a) + (d - c) = \varphi((a, b)) + \varphi((c, d)) \), so \(\varphi \) is a homomorphism.

Since the identity of \(\mathbb{Z} \) is 0, the kernel of \(\varphi \) is \(\{(a, b) \in \mathbb{Z} \oplus \mathbb{Z} | b - a = 0\} \), which is just the set of all ordered pairs with the same integer in each coordinate, or in other words \(\{(a, a) | a \in \mathbb{Z}\} \).

(b) What familiar group is \((\mathbb{Z} \oplus \mathbb{Z})/(\ker \varphi) \) isomorphic to? (Use the first isomorphism theorem.)

Solution: We already have a homomorphism \(\varphi \), so the 1st isomorphism theorem tells us the domain mod the kernel is isomorphic to the image. So \((\mathbb{Z} \oplus \mathbb{Z})/\ker \varphi \approx \) the image of \(\varphi \). Now for any \(n \in \mathbb{Z} \), we have \((0, n) \in \mathbb{Z} \oplus \mathbb{Z} \) and \(\varphi((0, n)) = n - 0 = n \), so \(\varphi \) is onto, and thus the image is all of \(\mathbb{Z} \).

Therefore, \((\mathbb{Z} \oplus \mathbb{Z})/\ker \varphi \approx \mathbb{Z} \).
(c) Describe the set $\varphi^{-1}(7)$ (the “pre-image” of 7, that is, the set of elements that map to 7).

Solution: $\varphi^{-1}(7) = \{(a, b) \in \mathbb{Z} \oplus \mathbb{Z} \mid b - a = 7\}$, or in other words all ordered pairs in which the second coordinate is 7 more than the first coordinate.

10. What is the smallest positive integer n such that there are 3 or more nonisomorphic Abelian groups of order n?

Solution: We use the fundamental theorem of finite abelian groups to note that there is only one isomorphism class of abelian groups of any prime order, and two of any prime-squared order. Also there is only one abelian group of order 6, namely $\mathbb{Z}_2 \oplus \mathbb{Z}_3$. However, if the group has order 8, there are 3 isomorphism classes: \mathbb{Z}_8, $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, and $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Thus $n = 8$ is the smallest such positive integer.

11. How many nonisomorphic Abelian groups of order 300 are there? List them.

Solution: Note that $300 = 2^2 \cdot 3 \cdot 5^2$. So using the fundamental theorem, we have any abelian group of order 300 must be isomorphic to one of the following:

$$\mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$$
$$\mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$$
$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$$
$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$$

Since none of these groups are isomorphic to each other, there are only 4 mutually non-isomorphic abelian groups of order 300.

12. Suppose G is an Abelian group of order 120 and G has exactly 3 elements of order 2. What direct product of cyclic groups is G isomorphic to?

Solution: Since G is abelian of order 120, we know G is isomorphic to exactly one of $\mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$, $\mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$, or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$.

Now the first of those groups only has one element of order 2, namely $(4, 0, 0)$. The second has 3 elements of order 2, namely $(2, 0, 0, 0), (2, 1, 0, 0)$, and $(2, 1, 0, 0)$. The last group has more than 3 elements of order 2, since you can create such an element by using $(*, *, *, 0, 0)$ where each $*$ can be either 0 or 1, and at least one of them must be 1. (This gives 7 possible elements.) Therefore, we must have

$$G \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5.$$
\[
\begin{array}{ccc}
\mathbb{Z}_3 \oplus \mathbb{Z}_5 & \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \\
\hline
\text{element of order 3} & (3, 0) & (1, 0, 0) \\
\text{element of order 5} & (0, 1) & (0, 1) \\
\text{element of order 15} & (3, 1) & (1, 0, 1) \\
\text{element of order 9} & (1, 0) & \text{none} \\
\end{array}
\]

(Since the LCM of the orders of elements of \(\mathbb{Z}_3, \mathbb{Z}_3, \) and \(\mathbb{Z}_5 \) can never be 9, there are no elements of order 9 in \(\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \).)

This proves the required statements.