7.3 Finding the Eigenvectors of a Matrix

Definition 1 (7.3.1). Let λ be an eigenvalue of an $n \times n$ matrix A. The λ-eigenspace of A, denoted E_λ, is defined to be

$$E_\lambda = \ker(A - \lambda I_n)$$

$$= \{v \in \mathbb{R}^n : Av = \lambda v\}$$

$$= \{\lambda\text{-eigenvectors of } A\} \cup \{0\}.$$

Note 2. An eigenspace is a subspace, since it is the kernel of the matrix $A - \lambda I_n$. All of the nonzero vectors in E_λ are λ-eigenvectors.

Definition 3 (7.3.2). The dimension of the λ-eigenspace $E_\lambda = \ker(A - \lambda I_n)$ is called the geometric multiplicity of λ, written $GM(\lambda)$. We have

$$GM(\lambda) = \dim(E_\lambda)$$

$$= \dim(\ker(A - \lambda I_n))$$

$$= \text{nullity}(A - \lambda I_n)$$

$$= n - \text{rank}(A - \lambda I_n).$$

Definition 4 (7.3.3). Let A be an $n \times n$ matrix. A basis of \mathbb{R}^n consisting of eigenvectors of A is called an eigenbasis for A.

Theorem 5 (eigenvectors with distinct eigenvalues are linearly independent).

Let A be a square matrix. If v_1, v_2, \ldots, v_s are eigenvectors of A with distinct eigenvalues, then v_1, v_2, \ldots, v_s are linearly independent.

Note 6. Part (a) of the following theorem is a generalization of the preceding theorem, allowing multiple (linearly independent) eigenvectors with a single eigenvalue.

Theorem 7 (7.3.4, eigenbases and geometric multiplicities).

a) Let A be an $n \times n$ matrix. If we concatenate bases for each eigenspace of A, then the resulting eigenvectors v_1, \ldots, v_s will be linearly independent. (Note that s is the sum of the geometric multiplicities of the eigenvalues of A.)

b) There exists an eigenbasis for an $n \times n$ matrix A if and only if the sum of the geometric multiplicities of its eigenvalues equals n:

$$\sum_{\lambda \text{ of } A} GM(\lambda) = n.$$

Theorem 8 (7.3.5, n distinct eigenvalues). If an $n \times n$ matrix has n distinct eigenvalues, then there exists an eigenbasis for A.

Theorem 9 (7.3.6, eigenvalues of similar matrices). Suppose A is similar to B. Then

a) $f_A(\lambda) = f_B(\lambda)$. (study only this part for the quiz)

b) $\text{nullity}(A) = \text{nullity}(B)$ and $\text{rank}(A) = \text{rank}(B)$.

c) A and B have the same eigenvalues, with the same algebraic and geometric multiplicities.

d) $\det A = \det B$ and $\text{tr} A = \text{tr} B$.

Note 10. Similar matrices generally do not have the same eigenvectors.

Theorem 11 (7.3.7, algebraic and geometric multiplicity). If λ is an eigenvalue of A, then

$$GM(\lambda) \leq AM(\lambda).$$

Combining this with earlier results, we get

$$\sum_{\lambda \in \text{eigenvalues of } A} GM(\lambda) \leq \sum_{\lambda \in \text{eigenvalues of } A} AM(\lambda) \leq n.$$